
Model Driven Design Method for Software
Architecture

Thodeti Srikanth,

Dachepally Ravi Kumar , Mahi Naveen Kumar

Research Scholars, Ph.D. (Computer Science),

Dravidian University, Andhra Pradesh, INDIA

Abstract— Software Architecture allows for early assessment
of and design for quality attributes of a software system. It
provides an important help for current software development.
The development of software architecture is complex due to
the absence of a standard way that lead the generation of
software architecture artifacts. In this paper we define an
architecture design method that provides the systematic
method for software architecture of business application. We
apply model driven engineering techniques to achieve the
goal, the architecture is treated as a model composed of
related models and application of design decision is encoded
in terms of model transformation. We define a specialization
of the attribute driven design(Add) method using model
driven engineering techniques that systematizes and assists
the Decision Making activity.

Keywords— Model Driven Architecture, Model Driven
Development, UML, Model Driven Architecture tools etc.

 INTRODUCTION

Software development processes have turned into
architecture-centric either for dealing with complexity, risk
management or effective resolution of quality attributes
(QAs). SAs are built following Software Architecture
Design Methods (SADMs), which mainly consist of three
major activities [5, 7]: Requirement Analysis, Decision
Making and Architectural Evaluation. Figure 1 depicts this
general method. Perry and Wolf’s paper [12], an evolving
community has actively studied the theoretical and
practical aspects of Software Architecture (SA). In the
years to follow, its adoption in industry has been broad and
the research community has grown [2]. There is a wide
variety of SADMs, and while some provide general
guidelines and checklists, others also offer QA resolution
techniques [5]. However, no SADM is precise enough to
encode all details on how software architecture must be
manipulated when performing an activity of the design
method.

Figure 1. General Software Architecture Design Method.

The architect’s experience is still crucial for the success of
architecture construction, even though architectural

knowledge is widely reported in the literature. While a
SADM encodes the knowledge on how to proceed to build
an architecture, tactics and patterns encode the knowledge
of well-known solutions to common problems or
requirements. For example, N-tier and Client/Server are
examples of enormously successful architectural patterns
[16] widely used in industry.
 The IEEE 1471 Standard [1] has placed the concepts of
Architectural View and Viewpoints as the crucial
constituents of an architecture representation. However,
there is no unified vision on which set of viewpoints must
be used when deciding the particular view set for a system
architecture. Several proposals of viewpoints are
available[10, 13, 14], and some of them are particular to
certain kinds of applications. For specifying a view, the
language constructs provided by each viewpoint is not
agreed upon. Some authors position UML as the one-fits-
all Architecture Description Language [16], other authors
wonder to what extent it can be considered an ADL at all
[6].
 In this paper, we present a systematic and tool-enabler
Design method for manipulating the software architecture
when performing the Decision Making activity. It presents
the following features:

i. it conforms to current architectural representation
proposals by using mainly UML for architectural
view representation,

ii. it encodes current architectural knowledge on
quality attribute resolution,

iii. it is evolvable by enabling the inclusion of new
knowledge,

iv. it enhances the separation of concerns
v. it preserves the architectural rationale and makes it

traceable.
We present the case of Enterprise Applications. Not
only this family of systems shares the expected quality
attributes and there are several proposed techniques to
address them, but also specific architecture description
proposals are available [14].We apply Model-Driven
Engineering [15] techniques to specialize and enhance a
SADM targeting Enterprise Applications. The architecture
representation is treated as a mega-model organized in
Architectural Views that are the constituent and related
models, using Model-Driven Architecture to improve
separation of concerns. Also, we understand the
application of architectural decisions as model
transformations which encode the architectural knowledge
on QA resolution.
 The rest of the paper is structured as follows: (i)-
Related work, (ii)- proposed method, (iii)- illustrates its
application to the design of the software architecture of a
case study from the literature, (iv)- architectural rationale
representation, (v)- states the conclusions.

Thodeti Srikanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2816-2821

2816

RELATED WORK

Model-Driven Development. The OMG’s Model Driven
Architecture initiative is aimed at increasing productivity
and re-use through separation of concern and abstraction.
A Platform Independent Model (PIM) is an abstract model
which contains enough information to drive one or more
Platform Specific Models (PSM). Possible PSM artifacts
may include source code, DDL, configuration files, XML
and other output specific to the target platform. MDA aims
to enhance portability by way of separating system
(abstract) architecture from platform (concrete)
architecture. Platform Independent Models describe the
structure and function of a system, but not the specific
implementation. MDA has the capability to define
transformations that map from PIMs to PSMs. In [17],
Tekinerdo˘gan et al. consider MDA and Aspect-
Orientation as complementary techniques for separation of
concerns (SoC), and develop a systematic analysis of
cross-cutting concerns within the MDA context. This work
is strongly related to ours, but we use model
transformations not only for refining elements in higher
levels of abstractions into lower levels, but also for
incrementally building the software architecture of a
system and documenting its rationale. The primary focus
and work products of Model-Driven Engineering (MDE)
are models, and combines Domain- Specific Languages
(DSLs) and transformation engines and generators. These
two mechanisms allow to encapsulate the knowledge of a
particular domain. A model is a formal specification of the
function, structure and behaviour of a system within a
given context, and from a specific point of view (or
reference point). A model is often represented by a
combination of drawings and text, typically using a formal
notation such as UML, augmented where appropriate with
natural language expressions.
Architectural Design Decisions. Virtually all decisions
during architectural design are implicitly present in the
resulting software architecture, lacking a first-class
representation. The architecture of a system is a
specification of the parts and connectors of the system and
the rules for the interactions of the parts using the
connectors.
Some approaches are emerging to overcome this problem.
Jansen et al. [8] present the Archium approach which
defines the relationship between design decisions and
software architecture, proposing a meta-model for stating
such a relationship, currently providing tool support [9].
Due˜nas et al. [4] study how to incorporate a Decision
View to architecture descriptions, mainly to Kruchten’s
4+1 Architectural Framework. They identify requirements
for such a view and define the elements that are used to
populate it. All the previous approaches tackle views based
on the Component & Connector view-type [3].
In contrast, our approach deals with various viewpoints
required in architecture description. Besides, we use MDE
techniques not only for easing architecture manipulation,
but also for constructing the software architecture from
scratch. Thus, the sequence of applied model
transformations is a first-class mechanism for expressing
design decisions, stating explicitly the architecture
rationale.

 PROPOSED MODEL-DRIVEN DESIGN METHOD

A MDDM is a process for designing a software
architecture from the needs and concerns of stakeholders,
mainly the expected system Quality Attributes (QAs).
Several techniques have been proposed for tackling each
major activity of such a process, being the Decision
Making the most demanding task. In particular, the
Attribute-Driven Design (ADD) [18] method takes as input
a set of quality attribute scenarios and employs knowledge
about the relation between quality attribute achievement
and architecture in order to design the architecture. The
ADD method can be viewed as an extension to most other
development methods, such as the Rational Unified
Process. ADD is an approach to defining a software
architecture that bases the decomposition process on the
quality attributes the software has to fulfill.

Figure 2. Steps of the Attribute Driven Design method.

It is a recursive decomposition process where, at each
stage, tactics and architectural patterns are chosen to
satisfy a set of quality scenarios and then functionality is
allocated to instantiate the module types provided by the
pattern. ADD is positioned in the life cycle after
requirements analysis and, as we have said, can begin
when the architectural drivers are known with some
confidence. Figure 2 depicts the main steps of this method.
We define a specialization of the ADD method, using
Model-Driven Engineering techniques, which systematizes
and assists the Decision Making activity. To this end, we
use the proposal of Rozanski et al. [14] for Enterprise
Application software architecture representation. They
define six architectural viewpoints, each addressing a
cohesive set of architectural concerns: Functional,
Information, Concurrency, Development, Deployment, and
Operational. Each view-point is defined in terms of a set
of models and activities. A precise definition in terms of
the OMG’s four-layer meta-modeling approach is part of
the ongoing work. We follow the recommendation in [3]
that clearly states which kinds of elements can be part of
different types of views. When defining a model, we select
the view-type that best suits the model intention. We use
UML notation for depicting models.

Thodeti Srikanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2816-2821

2817

 In order to enhance the SoC in the architecture
representation, we apply additional techniques to improve
modularization. Following MDA, we structure
architectural views in three levels of abstraction. The most
abstract level consists of a Computation Independent
perspective of the architecture (CIA), mainly populated by
the critical concerns specified as functional and quality
scenarios. The second level consists of a Platform
Independent perspective of the architecture (PIA) in which
those concerns are resolved without taking into account the
peculiarities of any underlying platform. This level is
organized in terms of views, and they are built by applying
patterns and tactics that address the identified concerns.
The third level provides a Platform Specific perspective of
the architecture (PSA). It provides a technological solution
to the abstract architecture to second level. This division
not only organizes architectural views, but also separates
platform independent from platform specific architectural
decisions. We illustrate in Figure 3 Model Driven Design
Method we propose.

Figure 3. MDDM for architecture description.

 In order to assist the decision making activity, we
apply MDE techniques to automate the manipulation of the
architecture representation. To this end, we consider the
architecture representation as a mega-model that follows
the structure depicted in Figure 3.

Figure 4. Decision Making activity.

Then the method is understood as the successive
application of model transformations, starting from an
empty representation and ending with the complete
architecture representation. Figure 4 illustrates this
mechanism. Although architecture design is presented as a
sequence of transformations. The sequence of model
transformations is, by itself, an explicit representation of
the architecture rationale. Thus, a model transformation is
a first-class construct to represent an architectural decision.

 APPLYING OUR APPROACH

In order to exemplify the application of the defined
approach, we address the design of the software
architecture of the Point-of-Sale case study, originally
presented in [11]. To this end, we follow the work
direction suggested in Figure 3. First, we define the
scenarios to be addressed in the Computation Independent
Architecture. Second, we resolve these scenarios by
applying our approach. After deciding which views we use
to organize the Platform Independent Architecture, we
follow the Attribute-Driven Design method sketched in
Figure 2, particularly using our systematized approach
based on model transformations depicted in Figure- 4.

A. Computation Independent Architecture
The Point-of-Sale (POS) system is an Enterprise
Application used, in part, to record sales and handle
payments in a retail store. The POS is a realistic case study
as retail stores and supermarkets do have computerized
registers used by cashiers to sell goods to customers. Such
a system usually includes hardware components such as a
computer, a bar code scanner and receipt printers, and the
software to run it. Also, it generally interfaces with
external services such as third-party tax calculator and
payment authorization systems. Even though many
scenarios need to be defined to develop a realistic version
of the POS system, we select a particular set of them that
allows us to clearly illustrate the defined approach. We
have following scenario for case study:
GS1: Process Sale. A customer arrives at a checkout with
items to purchase. The cashier uses the POS system to
record each purchased item. The system presents a running
total and line-item details. The customer enters discounts,
coupons and payment information, which the system
validates and records. The system updates inventory. The
customer receives a receipt from the system and then
leaves with the items.
VS1: Persist Sale Data. The POS system must persist the
sale information between successive executions of the
system. Sales data include date,item description, discounts
and coupons if used, and payment information.
VS2: Multiple Front-End Devices. A POS system must
support multiple and varied client-side terminals and
interfaces. These include a thin-client Web browser
terminal, a regular personal computer with something like
a form-based graphical user interface, touch screen input,
wireless PDAs, and so forth.
VS3: Mandatory User Authentication. The POS system
accepts requests from users only after they are
authenticated. Also, some requests can only be placed by
privileged users.

Thodeti Srikanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2816-2821

2818

B. Platform Independent Architecture
Once the set of architectural significant scenarios is
captured and documented in the CIA, the set of views for
the PIA must be selected. We define three architectural
views, namely Functional, Information and Deployment,
based on the homonymous Viewpoints proposed by
Rozanski et al. Next, following the ADD method, we
address each of the scenarios documented in the CIA:
GS1: Process Sale. This scenario describes the user-
system interaction to append a new sale to the system. A
thorough specification of this scenario is built by means of
an information structure and information flow models.
While the former is expressed in terms of conceptual
classes and relationships, the latter uses a state machine;
Figure 5 depicts the state machine for this scenario. Then,
the first model transformation to be applied is such that
incorporates both models to the Information View of the
architecture; this transformation mainly clones the input
model into the architecture model. Notice that model
transformations encoding Fowler’s Analysis Patterns may
be defined and applied to build the Information View.

Figure 5. Information Flow Model.

 Figure 6. Functional Structure Model.

VS1 & VS2: Persist Sale Data & Multiple Front-End
Devices. Considering these two quality scenarios, a three
layer architecture is decided to organize the Functional
Structure Model of the Functional View; Figure 6
illustrates this model. A model transformation is used to
decompose the entire system in terms of three components
following the Layers pattern. We further refine this first

organization following Fowler’s enterprise application
architectural patterns that suggest different approaches to
structure each of the layers. First, provided the complexity
of the POS domain, we decide the joint use of the Table
Module pattern to organize the Domain layer and the Table
Data
Gateway pattern to organize the data access part of the
Infrastructure layer. Then, two model transformations are
applied to achieve such a refinement. They not only
consider the current Functional Structure Model of the
Functional View, but also the Information Structure Model
of the Information View which defines the major concepts
to be managed. Thus, a Table Module and a Table Data
Gateway component for each concept populates the two
layers.
Finally, provided VS2, different front-end components are
defined. We follow the Page Controller pattern for easing
development and apply the Application Controller pattern
to factor out common behaviour of the page controllers.
All these decisions are enforced by successively applying
model transformations that refine a single component into
a set of interconnected components that
embodies/materializes the decision made. In turn, a
distributed runtime platform is also decided separating
front-end from back-end processing. We apply a model
transformation that organizes the Runtime Plat form Model
of the Deployment View in terms of the client/server
distribution pattern. We actually decided to split the back-
end in an application and a database server dedicated
nodes. VS2 renders the need for in-site workstations
(Register node) and a web server dedicated node for
attending different thin-clients. Figure 7 illustrates the
Runtime Platform Model. Different input and output
devices for the Register node are decided following the
Process Sale (GS1) functional scenario.

 Figure 7. Runtime Platform Model.

VS3: Mandatory User Authentication. To address VS3, we
first identify the types of resources that need to be
protected, together with the actions that can be made on
them. Resources and actions can be obtained from the
other models in the Information View by means of model
transformations. A Security Resources Model is built to
this end. Afterwards, principals are identified together with
the assigned permissions with respect to the defined
resources. Then, a Security Policies Model is built. Figure
8 and Figure 9 illustrate each of these models.

Thodeti Srikanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2816-2821

2819

Figure 8. Security Resource Model.

 Then, we apply a model transformation that automatically
appends a sign-in and sign-out process to the Information
Flow Model; such transformation appends the model
elements illustrated in Figure 10.

Figure 9. Security Policy Model

Figure 10. Single Sign-On aspect in Information Flow
Model.

The transformation also records the composition rules for
this view: additional components in the presentation are
required, the Application Controller will require sign-in if
there is no current user, security information data must be
preserved by the system. Then, this aspect can later be
weaved into the Functional View by another model
transformation.

 ARCHITECTURE RATIONALE

The architecture mega-model is automatically updated by
applying the model transformations corresponding to such
decisions. The sequence of applied transformations is itself
the rationale of the architecture built. Although originally
proposed in the Domain Analysis area and rarely used in
the Software Architecture discipline, Feature Models
proved to be useful for us when classifying design
alternatives. Feature Models’ ability to express variability
allows us to concisely define the set of alternative
architectural mechanisms that can be used. A Feature
Model consists of one or more Feature Diagrams (first
level elements) which organize features into hierarchies.
The Feature Model renders a tree which expressively states
variability such as optional features (grey dots) or selection
(grouped squares). A Feature Configuration is an instance
of a Feature Model in which particular alternatives are
selected, i.e. no variability remains. Then, a Feature
Configuration can embody a representation of the rationale
that yields the complete architecture.

 Figure 11. Deployment Decisions.

 Figure 11 illustrates the Feature Model with all
possible design decisions with respect to the Deployment
View. It states that the view consists of a Runtime
Platform model consisting of the Distribution of

Thodeti Srikanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2816-2821

2820

computational nodes; only a Client/Server distribution is
shown in the diagram. Such a distribution enables several
rich clients possible holding devices, and several thin
clients. In turn, servers can include a web server, an
application server, and a database server dedicated node.
Figure 12 presents the rationale for the POS System. The
particular Feature Configuration uses a Client/Server
distribution, one rich client with four devices and three
thin clients were decided. Also, one server of each kind
was selected, including two external providers to the
application server. This configuration resumes the
decisions made and can be straightforwardly mapped to
the architectural elements present in the Runtime Platform
Model depicted in Figure 7.

Figure 12. Deployment Rationale

CONCLUSIONS

 Our method conceives the architecture representation as a
mega-model, understanding it as a well-structured self-
contained representation of the system, expressed in a
precise language. In this context, the architecture design
activity can be seen as a large model transformation which
obtains, from an initially empty architecture, the complete
system architecture. This large transformation is composed
of a sequence of smaller sub-transformations, each
encapsulating the application of a design decision, i.e. the
resolution of a particular architectural concern.
 It is an interactive transformation as the software
architect selects which sub-transformation to apply next.
Then, the set of sub transformations available to the
architect can be regarded as the definition of a family of
large transformations, i.e. as all the possible ways to
design the complete architecture from scratch. Thus, by
incorporating additional sub transformations to this set, a
large number of architectures can be designed using the
method. By using Model-Driven Architecture as an
additional mechanism for separation of concerns, we might

be making the architecture representation more complex
and thus hindering comprehensibility. However, using
MDA not only favours modularization and reuse, but also
organizes and systematizes the architect’s task. Feature
Models proved to be useful for representing architecture
design alternatives, being each feature a particular tactic or
pattern that addresses a given concern. So, the Feature
Model describes the power of the designs that can be
achieved. Then, Feature Configurations embody a first
class representation for the architecture rationale.
Furthermore, such a Feature Configuration can be used by
a tool to automatically apply all decisions made (i.e. all the
model transformations corresponding to the selected
features) obtaining the corresponding architecture design.

REFERENCES
[1] IEEE Std 1471-2000, IEEE Recommended Practice for

Architectural Description of Software-Intensive Systems, 2000.
[2] J. Bosch. Software Architecture: The Next Step. In EWSA’2004,

pages 194–199, 2004.
[3] P. C. Clements, D. Garlan, L. Bass, J. Stafford, R. L. Nord, J. Ivers,

and R. Little. Documenting Software Architectures: Views and
Beyond. Addison-Wesley Professional, 2002.

[4] J. C. Due˜nas and R. Capilla. The Decision View of Software
Architecture. In EWSA’2005, pages 222–230, 2005.

[5] D. Falessi, G. Cantone, and P. Kruchten. Do Architecture Design
Methods Meet Architects’ Needs? In WICSA’2007, page 5, 2007.

[6] D. Garlan, S.-W. Cheng, and A. J. Kompanek. Reconciling the
Needs of Architectural Description with Object-Modeling
Notations. Science of Computer Programming, 44(1):23–49, 2002.

[7] C. Hofmeister, P. Kruchten, R. L. Nord, J. H. Obbink, A. Ran, and
P. America. Generalizing a Model of Software Architecture Design
from Five Industrial Approaches. In WICSA’2005, pages 77–88,
2005.

THODETI SRIKANTH received his Master of
Computer Applications degree from Kakatiya
University, Andhra Pradesh, INDIA in 2004. He is
pursuing Ph.D. (Computer Science) from
Dravidian University, Andhra Pradesh, INDIA. He
has more than 6 papers published in various
reputed National / International Journals and
Conferences.

 DACHEPALLY RAVI KUMAR received his
Master of Science degree from Osmania
University, Andhra Pradesh, INDIA in 2008. He is
pursuing Ph.D. (Computer Science) from
Dravidian University, Andhra Pradesh, INDIA.

MAHI NAVEEN KUMAR

received his Master

of Technology degree from IASE Deemed
University, Rajastan, INDIA in 2005. He is
pursuing Ph.D. (Computer Science) from
Dravidian University, Andhra Pradesh, INDIA

Thodeti Srikanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2816-2821

2821

